Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
BMC Oral Health ; 24(1): 60, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195425

RESUMEN

BACKGROUND: Knowledge, attitudes, and practices related to oral health among parents play a crucial role in shaping oral hygiene and preventing early childhood caries. This study was intended to determine the effect of a neuroeducational strategy in improving knowledge, attitudes, and practices related to early childhood caries among mothers or caregivers of children. METHODS: A quasi-experimental study was conducted, implementing an educational strategy involving 33 mothers or female caregivers of children who met specific selection criteria. The strategy consisted of three key elements derived from neuroeducation: (1) experiment, (2) surprise and play, and (3) learn. Based on the participants' attendance at the sessions, they were categorized into two groups: those who underwent in-person intervention (G1) and those who received a combined in-person and virtual intervention (G2). The impact of the strategy was evaluated by comparing the participants' knowledge and attitudes, as well as their children's plaque index, before and after the intervention (immediate and 6-month impact). RESULTS: The participants exhibited a favorable and statistically significant effect on the median number of correct answers related to knowledge (G1 immediate effect (IE): p = 0.03, 6-month effect (ME): p = 0.002; G2 IE p = 0.002, ME: p = 0.001), and in the children's plaque index (G1 IE: p = 0.003, ME: p = 0.003; G2 IE: p = 0.033, ME: p = 0.003). Furthermore, there was an increase in the number of participants with a high level of knowledge (G1 IE: 41.5%; ME: 75%; G2 IE: 45.5%, ME: 42.9%), and of children with a good level of oral hygiene (G1 IE: 50%; ME: 73.0%; G2 IE: 27.3%, ME: 84.6%). Finally, qualitative interviews revealed a lasting clarity in concepts and sustained knowledge and attitudes at the six-month mark. However, a slightly diminished understanding of the relationship between bacteria, sugar, and caries was observed in G2 group, and some loss of association in the G1 group, at six months. CONCLUSION: The implementation of this strategy resulted in significant and lasting impacts on knowledge, attitudes, and practices, especially in the G1 group. Nevertheless, there is a need for further reinforcement of the association between bacteria, sugar, and caries.


Asunto(s)
Cuidadores , Caries Dental , Niño , Humanos , Preescolar , Femenino , Caries Dental/prevención & control , Conocimientos, Actitudes y Práctica en Salud , Madres , Azúcares
2.
Free Radic Biol Med ; 211: 24-34, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043868

RESUMEN

The intricate relationship between calcium (Ca2+) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca2+-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca2+ signals in tumor cells. This study explores the role of HERPUD1 in regulating mitochondrial function and tumor cell migration by controlling ITPR3-dependent Ca2+ signals. We found HERPUD1 levels correlated with mitochondrial function in tumor cells, with HERPUD1 deficiency leading to enhanced mitochondrial activity. HERPUD1 knockdown increased intracellular Ca2+ release and mitochondrial Ca2+ influx, which was prevented using the ITPR3 antagonist xestospongin C or the Ca2+ chelator BAPTA-AM. Furthermore, HERPUD1 expression reduced tumor cell migration by controlling ITPR3-mediated Ca2+ signals. HERPUD1-deficient cells exhibited increased migratory capacity, which was attenuated by treatment with xestospongin C or BAPTA-AM. Additionally, HERPUD1 deficiency led to reactive oxygen species-dependent activation of paxillin and FAK proteins, which are associated with enhanced cell migration. Our findings highlight the pivotal role of HERPUD1 in regulating mitochondrial function and cell migration by controlling intracellular Ca2+ signals mediated by ITPR3. Understanding the interplay between HERPUD1 and mitochondrial Ca2+ regulation provides insights into potential therapeutic targets for cancer treatment and other pathologies involving altered energy metabolism.


Asunto(s)
Calcio , Neoplasias , Humanos , Calcio/metabolismo , Señalización del Calcio/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción/metabolismo
5.
Front Cell Dev Biol ; 11: 1072315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051468

RESUMEN

Introduction: Cardiovascular diseases, especially metabolic-related disorders, are progressively growing worldwide due to high-fat-containing foods, which promote a deleterious response at the cellular level, termed lipotoxicity, or lipotoxic stress. At the cardiac level, saturated fatty acids have been directly associated with cardiomyocyte lipotoxicity through various pathological mechanisms involving mitochondrial dysfunction, oxidative stress, and ceramide production, among others. However, integrative regulators connecting saturated fatty acid-derived lipotoxic stress to mitochondrial and cardiomyocyte dysfunction remain elusive. Methods: Here, we worked with a cardiomyocyte lipotoxicity model, which uses the saturated fatty acid myristate, which promotes cardiomyocyte hypertrophy and insulin desensitization. Results: Using this model, we detected an increase in the mitochondrial E3 ubiquitin ligase, MUL1, a mitochondrial protein involved in the regulation of growth factor signaling, cell death, and, notably, mitochondrial dynamics. In this context, myristate increased MUL1 levels and induced mitochondrial fragmentation, associated with the decrease of the mitochondrial fusion protein MFN2, and with the increase of the mitochondrial fission protein DRP1, two targets of MUL1. Silencing of MUL1 prevented myristate-induced mitochondrial fragmentation and cardiomyocyte hypertrophy. Discussion: These data establish a novel connection between cardiomyocytes and lipotoxic stress, characterized by hypertrophy and fragmentation of the mitochondrial network, and an increase of the mitochondrial E3 ubiquitin ligase MUL1.

7.
Front Cell Dev Biol ; 10: 968373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187489

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.

8.
Front Cell Dev Biol ; 10: 946678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060801

RESUMEN

The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.

9.
Cell Death Dis ; 13(7): 659, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902579

RESUMEN

Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Autofagia , Cilios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Ratones , Neuronas/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
10.
Biochem Pharmacol ; 203: 115183, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35870482

RESUMEN

Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.


Asunto(s)
Angiotensina I , Hipertensión , Angiotensina I/metabolismo , Angiotensina I/farmacología , Angiotensina I/uso terapéutico , Angiotensina II/metabolismo , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Imidazoles , Peptidil-Dipeptidasa A/metabolismo , Ratas , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Sistema Renina-Angiotensina , Sulfonamidas , Tiofenos
11.
Cells ; 11(12)2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35740989

RESUMEN

Alzheimer's disease (AD) is the most prevalent age-associated neurodegenerative disease. A decrease in autophagy during aging contributes to brain disorders by accumulating potentially toxic substrates in neurons. Rubicon is a well-established inhibitor of autophagy in all cells. However, Rubicon participates in different pathways depending on cell type, and little information is currently available on neuronal Rubicon's role in the AD context. Here, we investigated the cell-specific expression of Rubicon in postmortem brain samples from AD patients and 5xFAD mice and its impact on amyloid ß burden in vivo and neuroblastoma cells. Further, we assessed Rubicon levels in human-induced pluripotent stem cells (hiPSCs), derived from early-to-moderate AD and in postmortem samples from severe AD patients. We found increased Rubicon levels in AD-hiPSCs and postmortem samples and a notable Rubicon localization in neurons. In AD transgenic mice lacking Rubicon, we observed intensified amyloid ß burden in the hippocampus and decreased Pacer and p62 levels. In APP-expressing neuroblastoma cells, increased APP/amyloid ß secretion in the medium was found when Rubicon was absent, which was not observed in cells depleted of Atg5, essential for autophagy, or Rab27a, required for exosome secretion. Our results propose an uncharacterized role of Rubicon on APP/amyloid ß homeostasis, in which neuronal Rubicon is a repressor of APP/amyloid ß secretion, defining a new way to target AD and other similar diseases therapeutically.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Relacionadas con la Autofagia , Neuroblastoma , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
12.
IUBMB Life ; 74(9): 850-865, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35638168

RESUMEN

Mitochondrial E3 ubiquitin ligase 1 (MUL1) is a mitochondrial outer membrane-anchored protein-containing transmembrane domain in its N- and C-terminal regions, where both are exposed to the cytosol. Interestingly the C-terminal region has a RING finger domain responsible for its E3 ligase activity, as ubiquitin or in SUMOylation, interacting with proteins related to mitochondrial fusion and fission, cell survival, and tumor suppressor process, such as Akt. Therefore, MUL1 is involved in various cellular processes, such as mitochondrial dynamics, inter-organelle communication, proliferation, mitophagy, immune response, inflammation and cell apoptosis. MUL1 is expressed at a higher basal level in the heart, immune system organs, and blood. Here, we discuss the role of MUL1 in mitochondrial dynamics and its function in various pathological models, both in vitro and in vivo. In this context, we describe the role of MUL1 in: (1) the inflammatory response, by regulating NF-κB activity; (2) cancer, by promoting cell death and regulating exonuclear function of proteins, such as p53; (3) neurological diseases, by maintaining communication with other organelles and interacting with proteins to eliminate damaged organelles and; (4) cardiovascular diseases, by maintaining mitochondrial fusion/fission homeostasis. In this review, we summarize the latest advances in the physiological and pathological functions of MUL1. We also describe the different substrates of MUL1, acting as a positive or negative regulator in various pathologies associated with mitochondrial dysfunction. In conclusion, MUL1 could be a potential key target for the development of therapies that focus on ensuring the functionality of the mitochondrial network and, furthermore, the quality control of intracellular components by synchronously modulating the activity of different cellular mechanisms involved in the aforementioned pathologies. This, in turn, will guide the development of targeted therapies.


Asunto(s)
Sumoilación , Ubiquitina-Proteína Ligasas , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Cells ; 11(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326371

RESUMEN

The intake of food with high levels of saturated fatty acids (SatFAs) is associated with the development of obesity and insulin resistance. SatFAs, such as palmitic (PA) and stearic (SA) acids, have been shown to accumulate in the hypothalamus, causing several pathological consequences. Autophagy is a lysosomal-degrading pathway that can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Previous studies showed that PA impairs macroautophagy function and insulin response in hypothalamic proopiomelanocortin (POMC) neurons. Here, we show in vitro that the exposure of POMC neurons to PA or SA also inhibits CMA, possibly by decreasing the total and lysosomal LAMP2A protein levels. Proteomics of lysosomes from PA- and SA-treated cells showed that the inhibition of CMA could impact vesicle formation and trafficking, mitochondrial components, and insulin response, among others. Finally, we show that CMA activity is important for regulating the insulin response in POMC hypothalamic neurons. These in vitro results demonstrate that CMA is inhibited by PA and SA in POMC-like neurons, giving an overview of the CMA-dependent cellular pathways that could be affected by such inhibition and opening a door for in vivo studies of CMA in the context of the hypothalamus and obesity.


Asunto(s)
Autofagia Mediada por Chaperones , Humanos , Insulina/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacología
14.
Front Nutr ; 8: 775382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869541

RESUMEN

Fatty acid overload, either of the saturated palmitic acid (PA) or the unsaturated oleic acid (OA), causes triglyceride accumulation into specialized organelles termed lipid droplets (LD). However, only PA overload leads to liver damage mediated by mitochondrial dysfunction. Whether these divergent outcomes stem from differential effects of PA and OA on LD and mitochondria joint dynamics remains to be uncovered. Here, we contrast how both fatty acids impact the morphology and interaction between both organelles and mitochondrial bioenergetics in HepG2 cells. Using confocal microscopy, we showed that short-term (2-24 h) OA overload promotes more and bigger LD accumulation than PA. Oxygen polarography indicated that both treatments stimulated mitochondrial respiration; however, OA favored an overall build-up of the mitochondrial potential, and PA evoked mitochondrial fragmentation, concomitant with an ATP-oriented metabolism. Even though PA-induced a lesser increase in LD-mitochondria proximity than OA, those LD associated with highly active mitochondria suggest that they interact mainly to fuel fatty acid oxidation and ATP synthesis (that is, metabolically "active" LD). On the contrary, OA overload seemingly stimulated LD-mitochondria interaction mainly for LD growth (thus metabolically "passive" LDs). In sum, these differences point out that OA readily accumulates in LD, likely reducing their toxicity, while PA preferably stimulates mitochondrial oxidative metabolism, which may contribute to liver damage progression.

15.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166208, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214606

RESUMEN

Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca/patología , Mitocondrias/patología , Animales , Humanos , Inflamación/patología , Control de Calidad , Función Ventricular Izquierda/fisiología
16.
FASEB J ; 35(8): e21796, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34324238

RESUMEN

Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1+/- ) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Mitofagia/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Animales Recién Nacidos , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Mitocondrias/metabolismo , Mitofagia/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPP/genética
18.
Front Microbiol ; 12: 791127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069487

RESUMEN

Copper mining tailings are characterized by high concentrations of heavy metals and an acidic pH, conditions that require an extreme adaptation for any organism. Currently, several bacterial species have been isolated and characterized from mining environments; however, very little is known about the structure of microbial communities and how their members interact with each other under the extreme conditions where they live. This work generates a co-occurrence network, representing the bacterial soil community from the Cauquenes copper tailing, which is the largest copper waste deposit worldwide. A representative sampling of six zones from the Cauquenes tailing was carried out to determine pH, heavy metal concentration, total DNA extraction, and subsequent assignment of Operational Taxonomic Units (OTUs). According to the elemental concentrations and pH, the six zones could be grouped into two sectors: (1) the "new tailing," characterized by neutral pH and low concentration of elements, and (2) the "old tailing," having extremely low pH (~3.5) and a high concentration of heavy metals (mainly copper). Even though the abundance and diversity of species were low in both sectors, the Pseudomonadaceae and Flavobacteriaceae families were over-represented. Additionally, the OTU identifications allowed us to identify a series of bacterial species with diverse biotechnological potentials, such as copper bioleaching and drought stress alleviation in plants. Using the OTU information as a template, we generated co-occurrence networks for the old and new tailings. The resulting models revealed a rearrangement between the interactions of members living in the old and new tailings, and highlighted conserved bacterial drivers as key nodes, with positive interactions in the network of the old tailings, compared to the new tailings. These results provide insights into the structure of the soil bacterial communities growing under extreme environmental conditions in mines.

19.
Front Genet ; 12: 792231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126461

RESUMEN

Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45-50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.

20.
Odontoestomatol ; 22(35): 4-11, jul. 2020.
Artículo en Español | LILACS | ID: biblio-1102984

RESUMEN

Objetivo: Determinar la prevalencia de infraoclusión en molares primarios de niños de 7 y 8 años, Valdivia, Chile. Materiales y métodos: Estudio descriptivo de corte transversal. Se examinaron niños de 7 y 8 años en establecimientos educacionales de Valdivia. Fue evaluada la presencia y severidad de infraoclusión en molares primarios utilizando la clasificación de Brearley & McKibben. Para establecer diferencias estadísticas entre sexo y presencia de infraoclusión fue realizada la prueba de chi-cuadrado. Además un análisis de ANOVA fue utilizado para establecer diferencias entre la localización de la infraoclusión y el grado de severidad. El nivel de significancia estadística se estableció con un valor de p<0,05. Resultados: Fueron evaluados 359 niños y un 41,78% presentó infraoclusión. Según grado de severidad, 82,06% fueron leves, 15,28% moderadas y 2,66% severas. No se encontraron diferencias significativas entre sexo y presencia de infraoclusión. Se evidenciaron diferencias estadísticamente significativas al evaluar localización y grado de severidad (p<0,05). Conclusión: Existe una alta prevalencia de infraoclusión en niños de 7 y 8 años en Valdivia, Chile.


Objective: To determine the prevalence of infraocclusion in primary molars of children aged 7 and 8 in Valdivia, Chile. Materials and methods: Descriptive cross-sectional study. Children aged 7 and 8 were examined in educational institutions in Valdivia. The presence and severity of infraocclusion in primary molars was evaluated using the Brearley & McKibben classification. The chisquare test was performed to establish statistical differences between sex and presence of infraocclusion. In addition, an ANOVA test was used to establish differences between infraocclusion location and degree of severity. The level of statistical significance was established at p <0.05. Results: Of 359 children evaluated, 41.78% had infraocclusion. As per degree of severity, 82.06% of cases were mild, 15.28% moderate and 2.66% severe. No significant differences were found between sex and presence of infraocclusion. Statistically significant differences appeared when assessing location and degree of severity (p <0.05). Conclusion: There is a high prevalence of infraocclusion in children aged 7 and 8 in Valdivia, Chile


Objetivo: Determinar a prevalência de infraoclusão em molares decíduos de crianças de 7 e 8 anos, Valdivia, Chile. Materiais e métodos: Estudo transversal descritivo. Crianças de 7 e 8 anos foram examinadas em estabelecimentos de ensino em Valdivia. A presença e gravidade da infraoclusão em molares decíduos foram avaliadas pela classificação de Brearley & McKibben. Para estabelecer diferenças estatísticas entre sexo e presença de infraoclusão, foi realizado o teste do qui-quadrado. Além disso, uma análise ANOVA foi usada para estabelecer diferenças entre a localização da infra-oclusão e o grau de gravidade. O nível de significância estatística foi estabelecido com um valor de p <0,05. Resultados: 359 crianças foram avaliadas e 41,78% apresentaram infra-oclusão. De acordo com o grau de gravidade, 82,06% eram leves, 15,28% moderados e 2,66% graves. Não foram encontradas diferenças significativas entre sexo e presença de infra-oclusão. Diferenças estatisticamente significantes foram evidenciadas na avaliação da localização e do grau de gravidade (p <0,05). Conclusão: Existe uma alta prevalência de infra-oclusão em crianças de 7 e 8 anos em Valdivia, Chile


Asunto(s)
Humanos , Niño , Erupción Dental , Niño , Chile , Diente Molar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...